
©2012-2013 Texas Christian University Computer Science Department. All rights reserved.

TEXAS CHRISTIAN UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

May 7, 2013

Authored by: Matthew Bauer, Reid Mulkey, Jose Segura

Developer Manual

Toward TCC Version 1.1

Developer Manual

Version 1.1

 2

Revision Sign-off
By signing below, the team member certifies that he has read the entire document and has, to the best of his

knowledge, found the information contained herein to be accurate and relevant within the document.

Name Signature Date

Matthew Bauer

Reid Mulkey

Jose Segura

Developer Manual

Version 1.1

 3

Revision History
The following is a history of revisions made to this document.

Document Version Date Submitted Changes

Developer Manual V1.0 04/27/2013
Initial Version, Skeleton

Outline

Developer Manual V1.1 05/07/2013
Updates to text for Web and

iOS Development

Developer Manual

Version 1.1

 4

Table of Contents
REVISION SIGN-OFF .. 2

REVISION HISTORY ... 3

TABLE OF CONTENTS .. 4

1 INTRODUCTION .. 6

1.1 PURPOSE OF DOCUMENT .. 6

1.2 OVERVIEW ... 6

2 WEB APPLICATION ... 7

2.1 DEVELOPMENT ENVIRONMENT ... 8

2.2 TOWARD TCC WEB ... 10

2.2.1 MENU BAR ... 11

2.2.2 HOME SCREEN .. 12

2.2.3 FOOTER SECTION ... 13

2.3 CAREER PAGE ... 13

2.4 CHECKLIST... 15

2.4.1 CHECKLIST GRADES .. 17

2.5 VIDEO PAGE ... 18

3 IOS APPLICATION .. 19

3.1 DEVELOPMENT ENVIRONMENT ... 19

3.2 CLASS STRUCTURE .. 20

3.2.1 CLASSES IN IOS .. 20

3.2.2 FILE STRUCTURE .. 20

3.2.3 IMPORTANT CLASSES ... 21

3.3 CHECKLIST... 23

3.3.1 MODIFY CHECKLIST TEXT ... 23

3.3.2 ADD CHECKLIST TASKS ... 24

3.3.3 MODIFY CHECKLIST DATES .. 29

3.4 WEB PAGES .. 30

3.4.1 MODIFY EXISTING LINKS ... 30

3.4.2 ADD ADDITIONAL LINKS ... 31

4 ANDROID APPLICATION ... 34

4.1 DEVELOPMENT ENVIRONMENT ... 34

4.2 CLASS STRUCTURE .. 34

4.2.1 NAMING SYSTEM .. 34

4.2.2 IMPORTANT CLASSES ... 35

4.2.3 OBJECTS.. 37

Developer Manual

Version 1.1

 5

4.3 CHECKLIST... 38

4.3.1 MODIFY CHECKLIST TEXT ... 38

4.3.2 ADD CHECKLIST TASKS ... 38

4.3.3 MODIFY CHECKLIST DATES .. 39

4.4 WEB PAGES .. 40

4.4.1 MODIFY EXISTING LINKS ... 40

4.4.2 ADD ADDITIONAL LINKS ... 40

5 GLOSSARY OF TERMS .. 41

Developer Manual

Version 1.1

 6

1 Introduction

1.1 Purpose of Document
The purpose of this document is to assist developers in modifying and deploying the Toward TCC

application. This assistance is provided in the form of textual descriptions as well as screenshots of the

application.

1.2 Overview
Section 2 assists the developer with the Toward TCC web application.

Section 3 assists the developer with the Toward TCC iOS application.

Section 4 assists the developer with the Toward TCC Android application.

Developer Manual

Version 1.1

 7

2 Web Application

The website is composed of different components, including one folder of CSS files, one folder of images,

and one folder of JS files, or JavaScript files. In Fig 2.1, you can see the breakdown of all the files that are

available.

CSS files include the formatting of all the components for the website. If anything needs to be changed with

colors or different fonts, you have to change them in the CSS folder. All files need to be updated to include

the change.

The images folder (img) has all the images linked to the website. You can edit the contents of this folder,

but please be cautious if you remove a file, it will no longer display on the website. Renaming an image can

also cause issues with the layout, please use caution when changing image sizes and image names.

Fig 2.1

Developer Manual

Version 1.1

 8

2.1 Development Environment
The web application was written using the Sublime Text 2 editor. Although it is not necessary for you to

use this type of editor any editor that you feel comfortable with will suffice, eg., Notepad, Notepad++,

WordPad.

If you want to use the Sublime Text editor, you can obtain it from http://www.sublimetext.com/ and

clicking on the download button in the menu bar. This has been demonstrated in Fig 2.1

After you have selected to download this program, you can go ahead and select the environment you are

working in. For example, if you are using a Windows 64 bit, select that version in the list provided. This

has been demonstrated in Fig 2.2 below. After the installation, open the sublime text program. Once the

program has opened, Go to file > open folder > and open the folder that has the index.html file for this

web application.

Fig 2.1

http://www.sublimetext.com/

Developer Manual

Version 1.1

 9

Fig 2.2

Developer Manual

Version 1.1

 10

2.2 Toward TCC Web
The home screen (Fig 2.3) can be modified in the index.html file (Fig 2.4). The index.html is broken down

in 3 different parts. These parts include the menu bar, the body, and the footer of the page. To add more

sections to the home screen you have to modify the index file, under the body tag.

Fig 2.3

Fig 2.4

Developer Manual

Version 1.1

 11

2.2.1 Menu Bar

The menu bar in Fig 2.5 is shown as seen from a browser window. The html code for the menu bar is

shown in Fig 2.6. You can edit the content of the menu bar from this section in the index.html file. Each

html file has its own menu bar. If a change is made on one html file, it should be updated on each one.

Fig 2.5

Fig 2.6

Developer Manual

Version 1.1

 12

2.2.2 Home Screen

The body content can be modified in the body section in the index.html. You can modify content by

removing and adding content in this section. Fig 2.7 shows you what the body section would look like in a

browser window, and Fig 2.8 illustrates what you would see in an html editor.

Fig 2.7

Fig 2.8

Developer Manual

Version 1.1

 13

2.2.3 Footer Section

In the footer section, you will have the copyright as well as the images for both the play stores. These

images can be modified or they can be used as is. In Fig 2.9 you can see what the browser would look like

when viewing the footer section. Fig 2.10 shows you what the editor section looks like when viewing from

an editor. Each website has its own footer section that can be easily modified at the bottom of the html file.

Fig 2.9

Fig 2.10

2.3 Career Page
The career page can be accessed through the career.html file and can easily be modified. The main body

hosts two different sections in the career page that lists the two different websites that it accesses. The first

is the career coach tool that is provided by TCC. This can be seen in Fig 2.13. You can edit the link as well

as the amount of spacing in this snippet of code.

The second section is the GenTX.org section. This is a tool used to provide information about professional

wages with education. The GenTX.org link can also be seen in Fig 2.13.

Developer Manual

Version 1.1

 14

Fig 2.11

Fig 2.12

Developer Manual

Version 1.1

 15

Fig 2.13

2.4 Checklist
The checklist home screen (Fig 2.14) can be accessed through the checklist.html file. The body of the file,

as seen in Fig 2.15, can be easily modified to add multiple elements. Each button opens a particular grade

level website. Checklist9.html is an example of what the naming convention for the grade level checklists

is.

Fig 2.14

Developer Manual

Version 1.1

 16

Fig 2.15

Developer Manual

Version 1.1

 17

2.4.1 Checklist Grades

Fig 2.16 is an example of how a check list is viewed in a browser. This is the common format for all the 9th-

12th grade checklists. The checklist9.html is seen in Fig 2.17. Each grade level has a similar format and is

layered as an unordered html list. These can be easily modified to add additional information or to remove

information in blocks. Unordered lists use CSS styling and are very compact, which will assist in screen

resolution and screen size.

Fig 2.16

Fig 2.17

Developer Manual

Version 1.1

 18

2.5 Video Page
The videos page can be access through the video.html file. Fig 2.18 shows what you would see through a

web browser. Fig 2.19 shows you the body of the file. Each button is linked to a YouTube playlist, which

can be easily managed through YouTube.

Fig 2.18

Fig 2.19

Developer Manual

Version 1.1

 19

3 iOS Application

3.1 Development Environment
The iOS application was written using Xcode 4.6.2 on an iMac using OS X 10.8.3. In order to install Xcode

4.6.2, visit https://developer.apple.com/downloads/index.action#. The download will require you to

log in with an apple developer account. Search “Xcode” in the search box to the top left, and click on the

dropdown menu for Xcode 4.6.2. Now click the link shown in Fig 3.1.

Fig 3.1

Once the download is complete, double click on the file. The files will be installed, and you will be taken to

a screen to move Xcode into your Applications folder, shown in Fig 3.2. Drag Xcode icon and put it into

your Applications folder.

Fig 3.2

https://developer.apple.com/downloads/index.action

Developer Manual

Version 1.1

 20

After installation, open up Xcode and click on the “Open Other…” button on the bottom left of the screen.

A file chooser will allow you to select a project to open. Select the “Toward TCC” project folder.

3.2 Class structure

3.2.1 Classes in iOS

All of the classes are associated with a certain screen in the application. There are also 2 classes for each

screen: a header file and a main file. The header file contains the definitions for all the variables and

methods the main file uses, and the main file contains all of the code.

3.2.2 File Structure

The variables that the file structure stores are shown and explained in Fig 3.3.

Fig 3.3

rememberedUsername – Username the application is remembering.

rememberMe – Stores whether or not the application is remembering a username.

currentUser – The index into the users array of who the current user is. If it is -1, then no one is logged in.

users – The array that stores users information.

Developer Manual

Version 1.1

 21

checklistOptions – Array storing the users reminder settings. Index 0 is for 1 week reminders, index 1 is

for 2 week reminders, etc.

checklistData – Array storing the users checklist progress, with each year having an array of Boolean values

representing if checkboxes have been filled in. Index 0 is 9th grade progress, index 1 is 10th grade progress,

index 2 is 11th grade progress, and index 3 is 12th grade progress. Each year’s array has as many Booleans as

it has checkboxes.

passwordHash – This is a string that stores the result of hashing the user’s password using the SHA1 hashing

algorithm.

securityQuestionAnswerHash - This is a string that stores the result of hashing the user’s security question

answer using the SHA1 hashing algorithm.

securityQuestion – This is a string that stores the user’s security question.

username – This is a string that stores the user’s username.

gradeLevel – This number stores the user’s grade level.

givenGradeReminder – This number stores the date the last grade reminder was given to the user, that

reminds the user to change their grade when the new academic year comes along.

3.2.3 Important Classes

3.2.3.1 ViewController.m

This class is the class that controls the home screen. Listed here is a list of the main methods, and a

summary of what they do. More in depth information can be found in the comments in the code.

-(void)viewWillAppear:(BOOL)animated – This method will check to make sure the file structure has been

initialized on the device.

-(void)toast:(NSString*)toastString – This method will display a toast notification on the screen, with the

toastString as the message.

-(IBAction)loginButtonPressed:(id)sender – This method is called when the login button is pressed. It will check

credentials, change the visibility of account management objects, and give any reminders needed.

-(IBAction)logoutButtonPressed:(id)sender - This method is called when the log out button is pressed. It will

reset the home screen objects so that a user is not logged in, it will log them out of the file structure, set the

Developer Manual

Version 1.1

 22

remembered username if needed, and give the user a toast notification informing them they have been

logged out.

-(void)changeOutletVisibility:(bool)visibility - This method will change the visibility of the account management

objects. If visibility is YES, the logged out objects become visible, and the logged in objects become

invisible. If visibility is NO, the logged in objects become visible, and the logged out objects become

invisible.

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender – This method is called when the screen

is going to change. For the purposes of this application, this method only performs a task when transitioning

to the WebPageViewController.m class/screen. This class will tell the next class what web page the user

wants to visit, and then transition to that page.

3.2.3.2 WebPageViewControl ler.m

This class will display all external web pages. Listed here is a list of the main methods, and a summary of

what they do. More in depth information can be found in the comments in the code.

- (IBAction)backButtonPressed:(id)sender – This method is called when the back button is pressed. If there is a

page to return to, the application will go back one page.

- (IBAction)forwardButtonPressed:(id)sender – This method is called when the forward button is pressed. If

there is a page to move forward to, the application will go forward one page.

- (IBAction)refreshButtonPressed:(id)sender – This method is called when the refresh button is pressed. It will

reload the page the browser is currently displaying.

- (void)setPage:(NSString*)incPage – This method is called by other classes trying to view a website. In the -

(void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender method of the preceding class, it will

create a WebPageViewController.m object and set the page string to its desired website.

- (void)viewDidLoad – This method will set the browser’s URL based off what page string was given to this

class.

- (void)webView:(UIWebView *)webView didFailLoadWithError:(NSError *)error – This method is called when the

web browser encounters an error. If the internet connection is lost, then the application will return to the

previous screen and notify the user of the error.

Developer Manual

Version 1.1

 23

3.3 Checklist

3.3.1 Modify Checklist text

In order to change text on the checklist screens, double click on one of the text views with text to be

changed. For example, to demonstrate correcting a typo on the 9th grade checklist screen, item number #2,

and hyphen number 3. First go to the “MainStoryboard_iPhone.storyboard” file, and navigate to the screen

to be changed. This hyphenated text is not visible so move the scroll view content down. Click and drag on

the scroll view (Fig 3.4) object and move it up (Fig 3.5). Then, expand it down so that the text is visible

(Fig 3.6). Then, double click on the text view that needs to be changed (Fig 3.7), and change the text.

Fig 3.4 Fig 3.5 Fig 3.6 Fig 3.7

 Make sure to change the scroll view back to how it was before implementing this change, or else it will not

scroll properly. The default x and y positions should be 0. For small iPhones, the width should be 320 and

the height should be 416. For the large iPhone view, the width should be 320 and the height should be 504.

For iPads, the width should be 768 and the height should be 960. Make sure to modify both the iPhone and

iPad storyboards. For an easy way to modify positioning, click on the 5th tab of the editor to the right, and

modify the values under the view section, highlighted in Fig 3.8.

Developer Manual

Version 1.1

 24

Fig 3.8

3.3.2 Add Checklist tasks

It is recommended not to add checklist tasks when this application is in production, for it will require users

to reinstall in order to take advantage of the new checklist tasks. For this example, a task will be added to

the iPhone 9th grade checklist screen, in between the 2nd and 3rd tasks. When new tasks are to be added to

the project, make sure to do so on both iPhone and iPad.

3.3.2.1 Reposition the scroll v iew

In order to add a new task to a checklist, move the scroll view in such a way that the point to insert is

visible. In order to move the scroll view, see Section 3.3.1 and Figs 3.4-3.6.

3.3.2.2 Duplicate a checklist task

In order to make sure the new checklist task to be inserted follows the same format established by the other

tasks, left click out in empty space and drag a box around all of the components, and release the left click.

Then, press command + c, then left click into empty space, and press command + v. This will generate a

new task.

Developer Manual

Version 1.1

 25

3.3.2.3 Add new task text

Change the heading and numbering of the new checklist task by double clicking on the heading label, and

then edit the hyphenated text in a similar manner. If the new checklist task needs more hyphenated text,

form a box around the hyphen and the text to the right of the hyphen, similar to 3.3.2.2, and press

command + c and then command + v. Make sure to change the numbering after this task to reflect the

changes. Now you should be at the point shown in Fig 3.9.

Fig 3.9

3.3.3.4 Ties to the code

The program will need to know what new task has been added, so it knows what text box is associated with

the user’s data. First, the definitions of the checkboxes must be changed in the “XGradeViewController.h”

class. The checklist tasks defined there currently occur in numeric order. By adding a new number to the

checklist, this will disrupt the file structure of people who were using the application before the task was

added. For this example, a new checkbox definition will need to be added for the

“NinthGradeViewController.h” (Fig 3.10). This new checkbox must be synthesized in

“NinthGradeViewController.m” (Fig 3.11).Then a new “on click” method must be made for this checkbox

(Fig 3.12) and it must be modified like all of the other checkboxes in “viewDidLoad” (Fig 3.13).

Developer Manual

Version 1.1

 26

Fig 3.10 Fig 3.11

Fig 3.12 Fig 3.13

If a change is being made in production, a try-catch statement must be added to avoid the program from

crashing, shown in Fig 3.14. The try statement will detect if the application will crash when it accesses

index 3 into the grade information. If it does, then there is an index out of bounds exception, so it will go

to the catch statement, which will add an object to the spot the checklist task is being added, and move the

ones after it forward by one. Then, the changes should be saved back to the file structure.

Developer Manual

Version 1.1

 27

Fig 3.14

Connections must be reset from the “MainStoryboard_iPhone.storyboard” and

“MainStoryboard_iPad.storyboard” files, so the interface knows what checkboxes the code is now referring

to. In order to do this, press the dark blue bar at the top of the application, and change the checkbox

connections in the 6th tab of the editor to the right (Fig 3.15). You will select the checkbox attribute in the

connections, and then remove their current “Touch Up Inside” and referencing outlets connections by

clicking the “X” in the upper left corner. Now that they have been removed, they can reset by redrawing

lines for both “Touch Up Inside” (Fig 3.16) and “checkboxX” (Fig 3.17) connections.

Developer Manual

Version 1.1

 28

Fig 3.14 Fig 3.15

Fig 3.16 Fig 3.17

 For the last step in adding a checklist task, go to the “submitButtonPressed” method within

“CreateProfileViewController.m”. Here you will find 4 for loops (one for each year) that populate a new

user’s checklist progress data (Fig 3.18). For this example, the number of checklist tasks for 9th grade is

increased by 1, so the upper bound of the for loop must be increased by 1, shown in Fig 3.19.

Developer Manual

Version 1.1

 29

Fig 3.18 Fig 3.19

3.3.3 Modify Checklist dates

In order to modify checklist dates, go to the “loginButtonPressed” method inside of “ViewController.m”.

Here, several integer arrays are defined (Fig 3.20). Each grade level has 2 different arrays associated with it:

XGradeMonths and XGradeDueDates. XGradeMonths is ordered from lowest to highest month for each

task, and XGradeDueDates is the order the months of the tasks appears on the checklist page. In order to

modify the January task of 12th grade to February, simply remove 1 from both arrays and put 2 in its place.

In order to enable 9th or 10th grade reminders, remove the comments before their array definitions and

surrounding their code. There are additional comments found in the code to aid in this process.

Fig 3.20

Developer Manual

Version 1.1

 30

3.4 Web pages

3.4.1 Modify existing links

All of the existing links can be modified inside one if/else statement in the “viewDidLoad” method inside

“WebPageViewController.m” (Fig 3.21). The comments to the right of each line of code describe what

URL each page is associated to. For an example, if the URL for the “Greetings” button is to be changed,

change the highlighted text in Fig 3.21.

Fig 3.21

Developer Manual

Version 1.1

 31

3.4.2 Add Additional Links

The example below shows you how to add a link to the TCC homepage on the Career Help screen.

3.4.2.1 Create a button

To the bottom right of the screen, there will be an “Object Library” tab. Scroll through this library until the

“Round Rect Button” appears (Fig 3.22). Left click and drag this object to the Career Help screen. Double

click on the button to change its text (Fig 3.23).

Fig 3.22 Fig 3.23

3.4.2.2 Create the segue

Right click on the button described above and drag to the WebPageViewController page in the interface

builder (Fig 3.24). Release the right mouse button, and select “push” from the options presented. Select the

segue that was just created. If you are having trouble identifying it, click on all segues out of Career Help;

the one you just created will have your button highlighted (Fig 3.25). Now, in the 4th tab of the editor to

the right, assign the segue a unique identifier (Fig 3.26).

Developer Manual

Version 1.1

 32

Fig 3.24 Fig 3.25

Fig 3.26

3.4.2.3 Prepare for segue

Inside the “prepareForSegue” method in “CareerHelpViewController.m”, a new if statement must be added

for the new segue, highlighted in Fig 3.27. Instead of “tccSegue”, use the unique identifier created in

3.4.2.2, and instead of “TCC Home”, use the title desired for the web page.

Fig 3.27

Developer Manual

Version 1.1

 33

3.4.2.4 Target the segue

Now, the “WebPageViewController.m” class must be set up to handle the new segue. At the end of the

if/else statement shown in Fig 3.21, create a new else/if statement for the new segue, shown in Fig 3.28.

Instead of “TCC Home” use the title defined in 3.4.2.3, and instead of “http://www.tccd.edu/”, insert the

URL of the desired page.

Fig 3.28

Developer Manual

Version 1.1

 34

4 Android Application

4.1 Development Environment
The Android application was developed using the Eclipse 4.2 Juno IDE. Before development can begin, the

Android SDK must be downloaded. It is recommended that you set up the ADT bundle for Eclipse. This

will automate most of the SDK download and installation as well as install the appropriate version of

Eclipse. There is a guide at http://developer.android.com/sdk/installing/bundle.html that was very

helpful for setting this up.

4.2 Class structure

4.2.1 Naming System

All of the classes that are the context of a layout have abbreviated names. They may seem obscure at first,

but they are the same labels used for the wire frame. A brief reference will be given (Fig 4.1) to clarify the

names.

http://developer.android.com/sdk/installing/bundle.html

Developer Manual

Version 1.1

 35

A1 – Agreement page

C1 – Career page

CL1 – Checklist page

CL2 – 9th Grade page

CL3 – 10th Grade page

CL4 – 11th Grade page

CL5 – 12th Grade page

CP1 – Change password page

FP1 – Forgot password page

HS1 – Logged out home screen

HS2 – Logged in home screen

O1 – Options page

P1 – Create profile page

SQ1 – Edit security question page

V1 – Videos page

Fig 4.1

4.2.2 Important Classes

4.2.2.1 MyApplication

This class is very important. It is where all the IO takes place. This class is set to be the applications main

class. This makes it possible to have global variables (Fig 4.2). The “rememberMe” variable stores the

remember me check box state on HS1, the “users” array stores all the user profiles on the phone,

“isLoggedin” stores what user is currently logged into the application, and “url” stores the web address that

the Web class uses. Without it, none of the pages could easily pass information to one another.

Developer Manual

Version 1.1

 36

Fig 4.2

4.2.2.2 Web

The Web class is simple to understand. It will display whatever web address is loaded into MyApp.url

before it is called to the screen (Fig 4.3). Therefore you must set MyApp.url to the appropriate web address

before calling the Web class.

Developer Manual

Version 1.1

 37

Fig 4.3

4.2.3 Objects

The only custom object in the Android application is the User() (Fig 4.4). A user consists of a username and

password, along with a security question and answer. An int represents their grade. The year1 string is the

data from the 9th grade checklist, year2 is the data from the 10th grade checklist, and so on. The notification

string stores the state of the notification checkboxes in O1. There are no methods and only two

constructors. One is used when the user creates a new profile and the other is used when loading in a

profile from the device.

Developer Manual

Version 1.1

 38

Fig 4.4

4.3 Checklist

4.3.1 Modify Checklist text

Changing the text on the android platform is very straight forward. All of the Strings that are used in the

XML layouts are stored in res/values/strings.xml. The names of the strings are formatted so that the

characters before the underscore are the class they are used in, and after the underscore there is a

descriptive name for the string. If small changes to the dates or wording need to be made then you only

need to modify this file.

4.3.2 Add Checklist tasks

If you need to add an entirely new item to the checklist then the appropriate layout file must be modified.

The layouts for all the screens are stored in res/layout/ (Fig 4.5). Select the checklist layout that needs to

be modified and you will see the GUI builder. From there, it is easy to add the item to either the bottom of

the list or insert it in the middle.

Now that the item is being displayed in the layout, you need to add the CheckBox ID to the corresponding

class. This can be done easily by following the comments and adding the CheckBox object to the onCreate()

and save() methods.

The last thing that must be done is to add the extra checklist item to the User class. Open User.java and add

a “0” in the constructor method to the checklist that you modified earlier. This is essentially adding the item

Developer Manual

Version 1.1

 39

to the user’s profile. Now open the MyApplication.java file and modify the default String in the loadArray()

method.

Fig 4.5

4.3.3 Modify Checklist dates

Adding additional dates to the checklist for reminders is actually a simple task. Open the HS2.java file and

in the onCreate() method, add the integer month to the ArrayList. Make sure that the index of the added

date is in the corresponding index of the checklist item. There are also comments explaining the layout and

system used for reminders.

Developer Manual

Version 1.1

 40

4.4 Web pages

4.4.1 Modify existing links

4.4.1.1 Checklist l inks

Links for the checklist can be found in the CL4 and CL5 classes. In order to change the website set the

Myapp.url String to the desired web address before starting the Web activity.

4.4.1.2 Video links

Links for videos can be found in the V1 class. In order to change the website set the Myapp.url String to the

desired web address before starting the Web activity.

4.4.1.3 Career l inks

Links for the career page can be found in the C1 class. In order to change the website set the Myapp.url

String to the desired web address before starting the Web activity.

4.4.1.4 Apply Now link

The link for the Apply Now button can be found in the HS1 and HS2 classes. In order to change the website

set the Myapp.url String to the desired web address before starting the Web activity.

4.4.2 Add Additional Links

Adding an additional link is simple. Create a button and set it’s “on click” attribute to a method that you

created. Simply set MyApp.url to the desired web address then create an Intent to start the Web activity.

Then modify the onBackPressed() method in the Web class so that it directs the user back to the page they

were last at based on the string in MyApp.url.

Developer Manual

Version 1.1

 41

5 Glossary of Terms
CACO (College Awareness Community Outreach) – They are the customers for the project. Goes to area

schools to teach children how to be successful in school and how higher education can make a difference in

their life.

Career Coach – Students can input their interests and receive a list of relevant careers and all the classes

required.

iOS – Apple's mobile operating system.

TCC (Tarrant County College)

TCU (Texas Christian University)

